A First Principles Investigation of Transitional Metal Doping in Lithium Battery Cathode Materials
نویسندگان
چکیده
The goal of this work is to understand the properties of mixed-metal intercalation oxides. Using first-principles methods, the effect of doping on the mixing, energetic, and voltage properties as well as the phase diagrams of lithium transition-metal oxides for lithium battery cathode materials was investigated. The effect of doping on the phase separation tendencies of layered transition-metal oxides was examined and it was found that for normal processing temperatures, Al is miscible in layered transition metal oxides (LiMO2) for five of the eight first-row transition metals studied. Temperature-composition phase diagrams for both Li(Al,Co)O2 and Li(Al,Cr)O2 were calculated. In these two systems, Al-doping is limited above 600oC by the formation of γ-LiAlO2 and at very low temperatures owing to the existence of a miscibility gap. Reduced solubility is expected in the layered phase above 600oC for all oxides which have substantial solubility with LiAlO2 due to the formation of γLiAlO2. The effect of transition-metal doping on the average voltage properties in Mn-based spinels was calculated and the large increase in average voltage found experimentally was reproduced. A detailed analysis on the layered structure Li(Al,Co)O2 was performed, studying the energetics of different lithium sites and the effect of short-range clustering on the shape of the voltage curve. Though the average voltage is raised by Al substitution, the unexpected stability of sites with a few Al nearest neighbors leads to an initial decrease in voltage. For the Al-doped LiCoO2 system, a step in the voltage curve is found only for micro-segregated materials. When the Al and Co ions are randomly distributed in a solid solution, the voltage curve shows a continuous, gradual slope. The effect of oxygen defects in the Li(Al,Co)O2 system was investigated. A model for the effect of oxygen vacancies on the free energy of doped layered oxides was created by combining an ideal gas approximation and first-principles energy defect calculations. The results qualitatively confirm experimental studies on oxygen release in lithium battery materials. Thesis Supervisor: Gerbrand Ceder Title: Associate Professor of Materials Science
منابع مشابه
Electrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملElectrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery
Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...
متن کاملTheoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملA high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملDoped LiFePO4 Cathodes for High Power Density Lithium Ion Batteries
Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode materials in lithium ion batteries, but with a lower raw materials cost and an increased level of safety. An inherent limitation of LiFePO4 acknowledged by researchers studying t...
متن کامل